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FOREWORD

Quantitative knowledge of the convective heat transfer coef-
ficient and thermal recovery factor is essential in thg engineéring
effort to extend the use of immersion thermometric meteorolegical
sensors higher into the upper atmospheré. Such an effort at the
University of Utah, sponsored by NASA Langley Research Center (under
research grant NGL 45-003-025), has produced an algorithm for the
automatic computation of these coefficients. The computer subroutine
apﬁiies to a variety of sensor tjpes over the varying altitudes and
air speeds of rocket-ejected meteorological parachutesondes. A
description of the subroutine and tabulated values are presented
elsewhere. The éuthnrs, in what follows, ha;e adapted -and extended .
the notes of prédecessors in the project wfﬁh the purpose of dodument—
ing the underlying bases for.the algorithm: 3Particular é:knowledgment
is accorded Dr.”Sadiq J. Alsaji, now at the College of Engineering
Technology, Baéhdad, Iraq, for his early cdﬁtributions to this com-

pilation.

Forrest L. Staffanson
Principal Investigator
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INTRODUCTION

This report concerns heat transfer phenomena "of rarefied gae
flows, and is based on a literature survey of analytical and experi-
mental rarefied gas dynamics. Subsonic flows are especially empha~
sized for the purposes of meteorological thermometry in the high
atmosphere.

Part one of the report deals with the heat transfer coefficients
(in external subsonic rafefied flow) for three basic geometries -- a
flat plate, cylinder and sphere -- in all flow regimes; i.e., free
molecule‘flow (Kn > 10), transition flow (10 > En > 0.1), slip flow
(temperature jump) (0.1 > Kn > 0.01), and continuum flow (Kn > 0.01).
ﬁifferent types of heat transfer phenomena,land the analysis of |
thecretical and experimental data are presenéed. The uncertainties

‘calculated from-ehe interpolation rule, Ne =7‘1/(l/‘Nuc + l/NuFM)’
compared with the available experimental data are also presented for
cylinder and sphere.

In part two, recovery factor for each geometry in subsonic
rarefied flows ié discussed. Uncertainties resulting from analyses

- of experimental data available at the present time are also presented



PART I

HEAT TRANSFER COEFFICIENT

1. Introduction

The treatment of heat transfer in a gas.depends on the structure
of the gas. Normally under standard conditions, the gas is‘considered
a continuum and no consideration is given to its molecular structure.
In the continuum regime, the flow and heat transfer can be adequa;ely
descfibed in terms of the Reynolds, Mach, Nusselt, and Prandtl numbers.
However,.at very low absolute pressures and densities, a gas behaves
more like independent particles described by kinetic theory. Thermo-
metric sensor elements uséd in the upper atﬁoéphere encounter air flows
throughout the varying degrees of rarefaction between the continuum
and free molecule conditions. The purpose of this report is to survef
the results of recent aﬁalytical and experiﬁehtal investigations éf
heat transfer iﬂ rarefied gases.

A gas depdrts from continuum properties and is said to be "rare-
fied" when the molecular mean free path A approaches 1 percent of the
dimension of the flow field. Suppose { is ésme chgracteristic dimen-
sion of the flow field, such as the raddius 6f a cylinder over which the
gas 1is flowing. -The ratio A/%, Knudsen nuﬁbgr [1], is a measure of the
degree of rarefﬁétion of the gas flow. The Knudsen number is related

to the Mach number, M = V/Vé, and the Reynolds number, Re2 = aVe/u.

1/2 .
= Ao (X . S M
o= () s

-2 -



When the Knudsen number is very small, the number of collisions
between molecules in the vicinity of the body is large relative to
the number of collisions of the molecules with the body. 1In this case
continuum concepts, the Navier-Stokes equations, and the Fourier heat
conduction law all apply. Under such conditions the flow is comple;ely
characterized by the Reynolds number and Mach number; the Knudsen
number does not enter the problem explicitly since it is considered to
be small [5].

When Knudsen number becomes sufficiently large, continuum concepts
fail and must be wmodified for calculating the heat transfer. At very
high Knudsen numﬂér, the number of collisions between molecules becomes
negligible and the flow is termed'"free molecule flow'". Between the
continuum and free molecule regimes, there is a rather wide range of
‘intermediéte flow'regimes.

It is convenient to divide rarefied géé dynamiég into the fol-
lowing regimes [l]: free molecule flow (Kn ; 10}, transition flow (10
> Kn > 0.1), slip flow (0.1 > Kn > 0.01), and continuum flow (¥n < 0.01).
The indicated Knudsen number ranges are approximate only, and different
types of heat transfer phenomena and theoretical approaches occur in |
each regime; The following discussion is coﬁcerned with understanding
the heat transfe%rmechanisms in the continuum, transition, slip, and
free molecular flow regimes for the sphere, cjlinder, and flat plate,
and 1s divided into groups based on the different regimes. The
analytical and ekperim&ntal estimation of uncertainty in the heat
transfer coeffiéiént for extérnal rarefied subsonic flows around the

specified geometries 1s of particular interest.

-3 -



2. Continuum Flow Regime

In the continuum regime, the boundary layer concept‘is‘used to
yileld theoretical expressions for heat transfer coefficients. Basic
conditions aseumed in the development of the boundary lajer equations
are well observed in continuum flow. Expressions of Nusselt number
" Nu(re, Pr) available from the literature are briefly_discusée&_below

for the flat plate, spheré, and circular cylinder.

2.1. Flat Plate

The boundary layer concept yields theoretical egpressions for
the heat transfer coefficient over a flat plate, However, the heat
transfer coefficient is greatly influenced by the kind of flow, i.e.,
laminar or turbulent. The heat transfer coefficient with turbulent |

flow is usually larger than with laminar flow.

2.1.1. Laminar flow over a flat plate

For a flat plate with constant wéll,temperature heated over its
entire length, the boundary layer concept yields the following equa-

tion for the local Nusselt number [3]:
_ 1/3 1/2
Nu_ = 0.332 (Pr) (Rex) (2)

~ and, therefore, for the convective heat transfer coefficient,

=

b =(Nu )T = 0.332 k (Pr)¥f3 (ﬁi)llz (3)



Often, for calculations in practical problems, an average value h over

some length L from the leading edge is useful [3].

c dx _ ¢ e n C _
f‘J Wl I'z Lo=2 v ?hL (4)

o
i
-
o YL —
-
(='W
"
[

For the flat plate in continuum flow, then,

Nu = 2Nu
X

Notice the heat transferlcoefficient tends to increase toward the
leading edge of the plate. Of course Eq. 2 holds only for x suffi-

‘ciently large to assure continuum flow.

2.1.2, Turbulent flow over a flat plate

When the ﬁeynolds number based on the distance from the leading
edge has reached the critical value (approximately 3 x 105),.thé £low
in the boundary layer beﬁomeé turbulent. The Nusselt number based on
 the average heat transfer coefficient for turbulent flow over the

entire heated plate is given by [3]
— 0.8 1/3
Nu = 0.037 (Rex) (Pr) _ (5)

In reality a certain part of the boundary layer near the leading edge
is always laminar. Integration must then be carried out in two
separate steps, over the laminar part and over the turbulent parﬁ.
However, assuming that the turbulent boundary layer starts right on

the leading edge, integration ylelds [89]

-5 -



W, = 0.037 ) l/3 [(rey08 - 23,100] (6)
for critical Reynolds number 5 x 105, and
M, = 0,037 @03 [Re)%8 - 4,200) 7

for critical Reynolds number 105.

2.2. Cylinder

A boundary layer builds up on the forward side of the cylinder
in the flow. Ihis boundary layer is always laminar near thé stagnaa.
tion point [6]. If the cylinder is heated, a thermal boundary layer
exists in the same way. In the immediate proximity of the stagnation
point, the velocity ocutside the boundary layer increases linearly with
, the.distance from the stagnation point as measured along the body |
surface. This is expressed by ug = Cx. The heat‘transfer in this re-~
glon for cylindrical bodies with constant surface temperature in a
flow normal to thelr axes was determined theoretically by Squire [3,4].
This calculation yields the local Nusselt number,

o

/2
u x
Nux = B(——S—) : (8)

v

where ug is the free stream velocity and B 18 a constant tabulated as

follows:

Pr | .7 .8 1.0 [5.  |10.

B | .496 | .523 | .570 [1.043 | 1.344




From Eq. 8, the local heat transfer coefficient yields

a 1/2 ' -
= 5
h = Bk (vx> (8.a)

where k is thermal conductivity.
For potential flow around a cylinder with circular cross sec~ .
tion, the velocity u_ outside the boundary layer is, according to

potential theory [3,4],

v, = 2uo sin (%%) (9)

where

u, = velocity outgide the boundary layer-

x = 6 %-= the distance along the surface from the stagnation

.poiﬁt

d = the diameter of the cylinder
and |

g = angle of the point we are considering measured from the.

stagnation point (radian)
In the neighborhood of the stagnation point, the "sine" can be replaced

by the angle. This gilves

u = bu (g) . (10)

and the local heat transfer in the neighborhood of the stagnation point

becomes



u
h = 2Bk (;@ (11)

In the dimensionless form,

Nu, = —

i
[
,_g_\
| (=
< | -
f= Ty
S’

ZB(Réd) 1/2 , (12)

vhere Nud and Red are based on free stream velocity and dfameter.
The local heat tramsfer coefficient along the surface of a
cylindrical body at a great distance from the stagnation point can be
calculated from the integral emergy equation {5, 6]:
L
| f;[ (t, - T udy = Gg-) (13)
0 w _

where

T = free stream temperature

o = k/pCp = thermal diffusivity
and

subscript w refers to wall.

Methods for such calculations have been developed by many
investigators [3,7]. Usually the distance (x) from.the stagnation
Hpéint is divided by the greatest diameter of the cylinder (its major i
axis L) to make angle 6 = s/L a parameter. In éll laminar boundary
layers the Nusselt number increases with the square root of the Reynolds

number.



The flow around cylindrical and spherical bodies separates from
the surface at about 7/2 (varies frem laminar to turbulent flow), and
determination of the heat transfer coefficient for the separated part
must consider the effect of separation.

The total heat flow from or to a tube, or the average heat-
transfer coefficient arouﬁd the circumference, i1s of interest. Hilpert [8]
made accurate measurements of this average value for air flow as shown

in Fig. 1. Nusselt and Reynolds numbers are calculated with the tube

k] - 5
U m | Diameter Hom Dismerer

54 win .7 (00189 mm| o pipe #o.0 | 2N mm 4 =4

Np x wireNo.2 (00245 om O pioe o | 250 mm . s"“"

240 WY (8050 mm|T sipp NaX0| 44.0 mm : e

5| ¥ W abe 10008 mm| & e mart| W00 mm 8
10°1 0 wmiv A0S |50 mm| X A M| 150.0 mm

LA meARE (100 mm

5 -
10 . ’Q‘B’
s :

F

-

1‘?3510?35102?35103?3510&?3510523510‘

vD
R=¥2

Fig. 1. Average £ilm heat~transfer coefficient on a cylinder in flow
of air normal to its axis., [6]

diameter as the refefence length and with the free stream velocity as
the reference velociiy. From Fig. 1 and from the results of other

experiments, eSpeciélly at low Reynolds numbers, it can be seen that

in various ranges of the Reyhplds number, the Nusselt number can he

presented in the form [3]

Na, = 0.43 + c(Red)m' " (14)



1

_ The numerical values for the constants C and m are tabulated below [3]:

Red C m

1-4,000 0.48 0.50
4,000-40,000 ' 0.174 0.618
40,000~-400,000 0.0239 0.805

It should be noted that a higﬁ turbulent levei in the approach-
ing stream increases not only the average heét transfer coefficient,
but also the local heat transfer on the upstream part of the cylinder
circumference which is covered by laminar boundary layer. Increases
in Nuy up to 25 percent have been measured for turbulent ievels up to
7 percent. (This 1s, however, of no concern in the upper atmoéphere
siﬁce the turbulence level of the ffee stream is very low due to the

absence of the turbulence initiating factors.)

2,3, SEhere-

Heat transfer at the surface 6f a sphere is determined by the
flow conditions. Flow around a sphere resembles that around a circular
cylinder, A lamina:r boundary layer covers the upstream portion of the
sphere, and separates from the side of the sphere cfeating an irregularly
fluctuating flow condition along the downstreaﬁ'portion. On Ehe side
of the sphere, the boundary layer may become turbulent at large Reynolds
numbers, influencing the iocation df the flow separation.

The éverage'heat~transfer coefficient for a sphere cannot be

obtained by caleculation since 1t is not possible yet to calculate the

- 10 -



heat transfer in the separated flow region on the downstream part of
the sphere. The following relation was proposed by Grigull {9] from
experiment:

T, = 0.37(Red)0'6 (pr)1/3 (15)

for a range 20 < Re, < 150,000. For small Reynolds numbers, the |

following relation was proposed [9]:

1/3

W, =2+ 0.37(Red)0'6 (Pr) (16)

d

Equation 16 describes the actual condition well, because as Re, =+ 0,

d
this equation yields Nud = 2, which is the value for heat transfer by

pure conduction,

3. Free Molecule Regime

3.1, TIrtroduction

Free molecule flow is defined as the flow obtained in the limit
when the Knudsen number becomes large. In that case, the Boltzmann

equation takes the form [1, 10]

-

df 3f , » 3f , F 3f -

—_— O — ¢ — =t —— =

dt st T & X m E 0 (17)

where

f = velocity distribution function
£ = acceleration vector, £ = dx(t)/dt
T = force vector, Fe=ma’ ;/dt2

In such flows, the interaction of the molecules with the wall

- 11 -



plays a major role, while the collisions of the molecules among them—
selves may be neglected. A gas in which the molecules do not collide
1s called a Knudsen gas. For a given characteristic dimension of the
flow, Knudsen gas may be represented as a gas Iin which the density and
the diameter of the molecules tends to zero. Then the mean free path
tends to infinity. The general solution of Eq. 17 in the absence of

external forces has the form
£(t,%,E) = f(to,i’ - 'é(t - t) ,E) | (18)
with the initial conditions,
;(to) = ;o’ E(tu) = Eo

With large Knudsen number, the heat conducted in unit time from

unit area may be expressed approximately by Knudsen's formula [10]

QFM
Y

oY)

-1 P(C +f{/2! '
1 bfl
=-—+(R*)(—--)] — (T -T) (19)
[“1 ) (eniikr)t/2 L1 72
where

o=

R R1/R2

b (constant) = 0 for parallel plates

= 1 for concentric cylinders

2 for concentric spheres
P = the pressure of a Maxwellian gas at the density at a

temperature T

- 12 -



T = (Tl + Té)/Z for small temperature differences
# = molecular weight of the gas

R = molecular gas constant

Cy = molecular heat capacity at constant volume

The above equation is based on the assumption of diffuse rgflec—
tion at the surface, where the tangéntial and normal momentum accommoda-
tion coefficients are equal to one. For parallel plates, Sparrow and
Kinney [11] derived an expression for thesé accommodation coefficients,
"In the case of the parallel plate geometry, the approximate characteristic
lengtﬁ is the separation between the plates L. For concentric cylinders
and spheres, the choice of the characteristic length is not obvious.

But Wachman [12] argues that the important characteristic length is the

i

The characteristic length is of great interest,.becaﬁse it is needed

inner radius R,. This is supported by many investigators [13, 14, 15],

in defining the Knudsen numbers and Reynolds nuﬁﬁers accurately,

In order to defermine the heat transfer to a body in a rarefied
gas, it i1s necessary to know the flux of energy and momentum carried
by the molecules impinging on andrreemitted froﬁ:the surface. The

thermal accommodation coefficient is defined by [1]

.. —.F .
S 20)
in W -

B and Ere are the incident and reflected energy fluxes from the sur-
face, and EW is the energy flux which the molecular stream carries away
from the surface at the surface temperature TW. The thermal accommoda-

tion coefficient may vary between 1 (complete accommodation, diffuse

- 13 -



reemission) and 0 (specular reemission). In experiments it is difficult
to ensure that the surface is free of contaminants and, therefore, re-
ported values of the coefficient range from 0.01 to nearly 1.0, depend-
ing on the condition of the surface. The sﬁrfaces most commonly used
. for engineering purposes are not clean, but contain some contaminants.
For such surfaces the accommodation coefficient may vary between 0.8
and 0.98;

The momentum accommodation coefficient must be defined to predict
the energy transport properly. Schaaf and Chambre [1l] suggested the
following tangential and normal accommodation coefficiénts which are

similar to the thermal accommodation coefficient

& = Tin . Tre (21)
in w
and
Byn ~ Pre '
§' = % (21.a)
' in W

T and P are tangential and normal components of ﬁﬁe momenﬁum.: The
subscripts have the same meaning as in the thermél accommodation

coefficient. For completely diffuse reflection § = &' =.1, and for
completely specular reflection 6 = ' = 0, For common engineering

surfaces § is in the range 0.8 to 1.

3.2. Review of Theory

3.2.1. Oppenheim theory

In the free molecular regime, the density is so low that the

- 14 -



structure of the gas cannot be considered continuous. Therefore, the
molecular structure is taken into consideration. This suggests that

heat transfer between an object and 2 rarefied gas stream in this regime
can be calculated entirely from the fundamental motions of the kinetic
theory of gases. Oppenheim [16] was successful in developing a theory
for predicting the heat transfer coefficient and thermal récove;y

factor. Oppenheim gave the following relation for Stanton number:

St = oCpu = oy o (G + F) | (22)
where
- o = thermal accommodation coefficient
9 . ‘
— 1 e-¢ '
G =X da o ‘ 7 o (22.a)
2evm ' :
A
= 1 [ ¢l + ecfp) ' |
7 o3 g i
A :
gnd
A = surface area

=
i

un/VQ = g sin & (dimensionless)

‘u_ = component of mass f£low velocity u normal to the wall

n
V = most probable molecular velocity (m/seé)
g = u/65 = yM/2 = speed ratio (dimensionless)
M =

Mach number

Oppenheim calculated Stanton number for various geometrical
shapes and presented the results in the form of plots as shown in Fig, 2.

He also presented an approximate expansion of Eq. 17 for various shapes,

- 15 =
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"Fig. 2. Heat transfer from a flat plate, a sphere, and a transverse
circular cylinder in a free molecule flow. [16]
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and pointed out that the flat plate results could be applied to any

surface making a constant angle & with the flow. Thus

st = Sté(¢) sin 8 | ' - (23)

where the subscript n indicates a flat plate normal to the flow, and
$ =s sin ® . - (23.a)

Therefore, the flat piate results apply to wedges and cones in compar-
ison with flat plates at an incident angle of & with the.flow,'where

the angle of incidence of the plate corresponds to half-the‘opening
angle of‘thg wedge or cone. Conditions on the flat plate.with Zero .
incident angle corréépond to those occurring on a cylinder of any.chSS*
sectional shape in axial flow. He pf0posed the following equations for
Russelt numﬁer fof_various shapes:

For plate

Nu_.. = RePr I—-t}———q——, 8 = EM (24}

. 2 ‘
e s
- - 2 2 2
NuFM = RePr m_ga 1 e 2.1 Io(%) + S {I- (%) + Il(%)jl
v 5 © 1] @5
For sphere

8 2

Nu_ = RePr X218 17 4L jerrece) + Lo erfs) (26)
FM Y s 2s
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where

Io(s) =

Il(s) -

ierfe(s)

erf(s)

'

modified Bessel function of first kind and zeroth order,

m
% J e o COS 0 de (dimensioniess)

0

modified Bessel function of first kind and first order,

n
1 J -5 cos @

= cos ¢ d0 (dimensionless)

a

= -]

= integral of complementary error funmction J {1 ~ erfx)dx
, . o

v

(dimensionless)

[

error function

.
e ¥ dx (dimensionless)

2]
/T 0

Comparing the Oppenheim theory with the experimental data reported in

reference 17 yields a maximum error of about 7 percent, due mainly to

the variation of the accommodation factor.

3.2.2,

Others

Oppenheim théory was based on the assumption that only convective

heat transfer takes place. 3hidlovskiy [20] made some correction to

the Oppenheim theory by considering radiation effects in addition to

the convective effects, Radiation plays a substantial role in the general

~ensemble of the thermal process under certain conditions. The geﬁeral

heat loss can be expressed by
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4
1= Geony ¥ e(OTc.o - Jo) ‘ * (27) .

where
£ = emissivity of the body
o = Stefan-~Boltzmann corstant
‘ Jo = the radiation flow from the outside source
Yony = heat loss due to convective heat transfer

aP 2 2
= ——S-(RTM)3/2<{% e’ Sin29 + (e s sinZB— /T g sin 6
V2r . | |

\ - T
~Arl w2y
x [1 + erf(s sin Bii) [Z(Y D T s v .(27‘3)
For cirecular cylinder in a flow perpendicular fo its axis, Atassi and
Brun [21] deduced another practical equation for the free molecule,
subsonic region,

Let the convéctive heat transfer rate be

q =St Cp pmu&(Tm - Taw) ' . . (28)

where

St = Stanton number

Cp = specific heat at consatant pressure
p, = free molecular density
u_ - = free stream velocity

Tam= adiabatic cylinder wall temperature
Then, considering adiabatic wall temperature, another form of Stanton

number will be possible.
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q = St'Cppmum(Tm - Tm) (29)

From Eqs. 23 and 23.a,

T~ T, |
St' = St —= 8¢ (30)

T -T
ot [+=]

By Eq. 24, we can evaluate St' which is a funetion of TM’ and is also

weakly dependént upon the mean overheat Cm’ where

T.+7T . : :
c =.(—9’-£——"31-T)/T o (31)
m 2 aw aw
where
Taw = adiabatic cylinder wall temperature
Tw = cylinder temperature
C = overheat, (T - T ‘)/@
w aw// Taw
Cm = mean overheat '

Y
@
S
v

Fig. 3. Coordinates of a body in a free molecule flow [22].
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In this case, Kogan [22] solved the Maxwell velocity distribution

function as

h 3/2 |
w 2
£, = n“(—;) exp {— h (¢ - v) } NP

where
) m
h = —
o 2K’1‘°°
n_ = number density

For hypersonic free-molecule flow, the Stanton number becomes [22],

: _ 2y Q - ‘
St = (33}
vy +1 o
Ap v (Teq - Tm) :

where
a = avefage accommodation coefficient
A = area of the body
v = free stream velocity
T = équilibrium temperature

T = wall temperature of the-body

]

J q dA

A

Q@ = average heat transfer rate =

Equation 33 is similar in form to Oppenheim's Eq. 22, Figures 4 and 5
show the results of the calculation for drag coefficient and Stanton
number, respectively. In calculating the drag coefficient, the cylinder
and sphere are referred to a normal area section, while the plate is

t w o ?

referred to the area of one side. It is assumed that T, =T = T or

o= 1.
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Fig. 4. Free molecule flow past convective bodies [22].
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Flatplate 8 = /2
,Cylinder

// Sphere
V4

Flatplate 9 = 0
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Free molecule flow past convective bodies {17].
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In addition to the heat.tranSmitted to the surface by the
incident molecules, the surface may receive heat from sources in ﬁhe
body, from heat conduction in the body, and from radiation. . Usually
Tm/Tm < 1; i.e., the body may be considered cold. In general, the
calculation reduces to very laboriéus quadratures; egpecially if one
dbes not make the assumption that Tr is constant over the body surface.

Schaff [;] and Hayes [2] derived the following expression for
convective heat transfer per unit time to a unit surface (dA) of a
convex body imme;sed in the steady, uniform, free molecule flow of a

perfect gas.

- KT, 2 Y y+ 1 Tw —¢2-
dQp = ap,, KT\ 5 "_-_Y+l‘,-2(*(--l)ﬂ e. -I?q:/F(l-.l-erfcb)

e_tpz\ d | 4
- 2 J A . - (34)

¢ = $ sin @, and 8 is the lo;al angle of attaék as shown in Fig. 3:
Tm is the wali temperature, The subscript « refers to free stream
conditions. s is the speed ratio defined ia Eq. 24, u_ is the free stream
veloéity. |

At very large Mach number, Hayes and Probstein [2, 48] convert

Eq. 34 to
13 1y+1% 1
$ 9%y = 7. Wal ?-1“9(1“%-1?;;2' @ - G3)

From Eq. 35, the adiabatic recovery temperature can be calculated as
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[}

2
T{ = [2@, - D/(y + 1)] s (36)
o
Therefore, if heat transfer occurs due to convection only, Tr is
independent of both o and 6., For high values of s the stagnation

temperature of the flow is given by [1,2]
T =T, (1 + I—-:}'—i sz) T T (I——%-i 52) (37)

From Eqs. 36 and 37, Stalder, Goodwin, and Craeger [17] found that in
high speed free molecule flow, the recovery temperature is higher than
the free stream stagnation temperature. When s sin 8 is large compared

to both unity and fTw7Tw (highly ccooled surface), Eq. 35 becomes
Q.. = (1/2) op u sin 6 dA ' (38)
FM : S

Equations 35 and 38 show the Mach number indepéndence principle {16,171,
namely that in high speed rarefied flows, the heat transfer depends
only on u_, p_, Tw and a.

Using Eq. 34, heat transfer rates can be calculated in terms of

the modified recovery factor and modified Stanton number.

T ~T
r'ErY+l=Tr_TwY+l (39)
Y o S ¢
St' = 5t — L[ = Q. S A (40)
vy + 1 aApmupr(Tr-Twa+l

which is similar to Eq. 33..
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For a flat plate at an angle of attack 6 (Fig. 4) [1],

N .2 77
r' =(——-:—2—) <~L23 +1- |1+ 7 (N + erfd) e¢ ) (41)
]
_ 1 2 . :
st' = { } eV + /TP + erfs) (42)
4/Ts
wheré
¢ = s s8in 6

When the front and rear surfaces are isclated, A is the surface of one
side only and N = 1, For the‘rear surface & is replaced by -6. When
both front and rear surfaces are in thermal contact, then A is the total
surface area and N - 0.'

For a circular cylinder of surface area A at an angle of attack

8 (Fig. 4), Talbot [21] gives

e zwonts 1) vz, (D) [0 1 () ()]

(43)

[sinﬂ/(ll/?_r—)] {[% + ¢} I, (9;-) + 91, (2;)} e-¢2/2 | (44)

il
Y
+
m
[N
o

™

St!

#

For a sphere with surface area A, Schaaf and Chambre [l] reported the

result of Sauer [24]

ot o= (252 + l) [l + (l/s)ierfs] +‘(232 ‘— l) (erfs)/(z.c:.:ﬂ sy

82-L1~+ (l/s)ierfq] + (erfs)/(?éz)

St = [1/(53?)] [52 + sierfes + (Erfs)IZJ , (46)
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where the notations are the same as those in Egs. 25 and 26.

The above results must be modified for a -nonuniform gas in
which the distribution function is different from the Maxwellian
distribution because of.the presence of viscous stresses and heat flow
[25], and as indicated the results are applied for high Mach numbers.
‘Expressions for heat transfer to cylinders and spheres for the free
molecule flow of a nonunifﬁrm gas were derived by Bell and Schaaf {26]
and Touryan and Maise [27]. Combined radiative and convective heat
transfer for large Mach numbers were handled by Stalder and Jukoff
{28], Stalder, Goodwin and Crazeger [17], and Abarbanel [29]. Numerical
solutions for flat plates are presented in Eckeft [7],lwhich includes
the effect of solar-fadiation on the surface temperature of bodies in
high altitudé flight. Abarbanel [28)] developed general resulfs for
the surface temperature of bodies in free molecule flow when both
convective and radiative transport are signific;nt. The adiabatic
recovery temperaturé of a surface element ﬁith local angle of attack

9 for high speed flows (sz >> 1, s gin 6 > 1) as derived by Abarbanel

[29] is
| 1/4
- Po - —
Tr = (252 +$T:]3._Y) _aF(kTw)Slz +%— (1 + erfg¢ /4 f2m ad

(47)

for convex surface to the flow. Where k is the Boltzmann constant, m is
the molecular mass, e is the emissivity and absorptivity of the surface,
and 8 is the Stefan-Boltzmann constant, Concave surfaces in free
molecule flow were investigated by Sparrow [30], Schamberg [31], and

Chanine [32].
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3.3. Analysis of Experimental Results

3.3.1. TFlat plate

Experiments for the heat transfer coeffiéients of free moleguie
flow past a flat plate at zero angle of attack have been studied quite
extensively{in the supersonic and hypersonic range, but unfortunately
lictle work has Been done for the subsonic region. However, by
empirical ;esults, we can correlate the local Nusselt number, NuX (Re,
M), and get a free molecule curve which is close to the free molecular
theory curve. It is‘inevitable there exist some deviation between the
two curves, say 7 percent maximum accuracy for Oppenheim theory [16].

However, the Oppenheim theory agrees very weil with the experi=

mental data., Interpolation of the theoretical values of continuum and

free molecule flows by the law |

into the transition regime, yields values which are very close to

experimental data in that regime.

3.3.2.° Cylinder . ,

Predictions by Stalder, Goodwin, and Creager [17] agree well with
the experimental results of Vrebalobich [33], and Atassi and Brun [21]
in the subsonic region. Vrebalobich [33] made a successful experimental
work on the transition flow regime, between slip and near free molecuie
regime. | |

Atassi and Brun [le found that for the subsonic region, the-
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dependence of the convection coefficient "h" upon Mach number is weaker
in'the free molecule flow than in continuum flow.

The theoretical curves [17] and the experimental data afe com-~
pared for supersonic flow‘in Fig. 6. Close exémination of this figure.
shows the départure in the free molecule regime and continuum regime

from the transition reglme

0 = ——
'FREE MOLECULE FLOW _ =
THEORY, a=0.9, 8>2 L
----- DATA OF KOVASZNAY 8 J g
o TORMARCK, REF. 1 P
-]
» . lﬁ
w > TEST POINTS
o - NOTE: SOLID POINTS 4]/ /MODEL DIA. MOLECULAR
2 REPRESENT DATA _ e IN, SPEED RATIO,»
L TAKEN N UNIV. OF il o 0010 2.08
Lt CALIF, TUNNEL / L] 0010 .60
w0~ | - .0010 188 to 2.04
3 ¢ . .0050 2.05
[ « .0050 2,65
z | T e 081 1.65
T : « .0BO -1.80
b |l 26 1.60
| NI 19 o 23
\ ] . . -
|°'2 L | xl i I L T ' P
"t to-! ' ' 10 lo? 103

REYNOLDS NUMBER, Re.o "
Fig. 6. Convective heat transfer coefficients for transverse cylinders
in supersonic flow. [17, 18, 19]
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3.3.3. sphere

Very little experimental data exists for the sphere, especially
for the free molecular flow regime., Therefore, in this regime the -
required data is determined by assuming that the free molecular flow
theory applies [3], and by utilizing the experimentai regsults from
transition and slip flows. |

Figure 8 supports the above argument. The general trend of the

curve 1s very similar to that of the cylinder.

1
. |
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. ] _
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Fig. 8. Heat transfer coefficients for spheres in subsonic flow [43,93].

- 30 -



3.3.4, CGeneralization

From previous analysis, the theory which 1s closest to
. experimental data for‘subsonic flow is the Oppenheim theory. Many
investigators [1,34] obtained very good experimental data for the near
free molécular or transition regime, but not for the free molecular
regime. Close examination of their empirical results reveals-an
important observation in the free molecule region. It confirms the
prediction of kinetic theory in its present form with the momentum and
energy flux of reeﬁitted molecules estimated in terms of macroscoPié
and empirically determined accommodation cbefficients. This indicates
a significant colliéidn rate in the gas surrounding a body, or enclosed
within some ﬁalls. In free molecule regime thé effects of momentum
" and energy transfer between the gas and the waiié are largely reduced.
The deviation from the free molecular values of.the dependent variabies‘
occurs for Knudsen ﬁumbers ranging from about S-to 15. So £gr, the
reason for deviation from the free—molecular tﬁé;ry is not clear [34];
But this deviation can be fitted within expressions of the form, Nu =
Nuf - A/k, where A ﬁéy depend on Mach number, témperature ratio, or
geometry [34]. In éﬁbsonié free molecularlflbﬁ, by the analogy of
Nu = Nu (Re, H), some useful analysis can be made by letting M + 0
at fixed Reynolds nuﬁber, without loss of qualifative information.
This results in a cofrelation [34] which elimiﬁates Mach pumber as a
parameter in the transition or free molecule cﬁtﬁés for all subsonic
data.

Reascnable accuracy of Nu (Re,M) in fre; ﬁolecule flow regime
is still that of Oppenheim theory, in which the accuracy is within 7

percent compared to.#he experimental data [17, 34].
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4. Transition and Slip Flow Regime

4.1, Introduction

4.1.1. Transition regime

A complete satisfactory formulation of the flow and energy
equations to yield results‘on heat trénsfer and skin friction in the
glip and transition regimes has not been’sufficiently completed at the
present time [1]. In the foregoing discussion, the case of free
molecule flow was considered in which the effects of molecular encounters
have been entirely neglectgd. Witﬁ increasing density the effectlof
these coiliéions begins to be impbrtant'and the low density part of the
transition regime begins. Jaffé [35] deriﬁed a geﬁeral formulation of
_this regime, employing a pertﬁrbation expansion solution of the Maxweli—
Boltzmann equation in the inverse power of the molecular mean free path.
The velocity distribution function f in the tréﬁsition ﬁlow.:egime is

assumed to be of the form [1, 30, 36]

£=1, [l t3o +(%)2 5 " ]
where
£, = Maxwellian equilibrium velocity distribution function
L = characteristic length |
L = typical macroscopic dimension
(%-;i) < 1 = dimensionless correction parameter

Many analytical calculations have been performed in this regime
by Heineman [37], Keller [38], Wang-Chang and Uhlenbeck [39], Kryzwoblocki

[40}, Szymanski [41], and Lunc and Lubonski [42]. Very extensive

- 32 -



experiments in this regime weré performed for spheres and cylinders

(wire) in subsonic flows by Kavanau [431, Vrebalovich {33], Takao [36],
and Atasai and Brun [21] for different thermal accqmmodation coefficients.
Results agree with the values obtained from the free molecule theory,
which predicts some deviation at the beginning and end of that regime
from the traﬁsition regime and continuum regime, respectively (34].

In order to eliminate the dependence of the results on the
thermal accommodation coefficient and on the Mach number [§2], the data
of the above investigators [21, 36, 43, 44] were revised in Fig. 9 as
St/StFM versus StFM/Stc' St is the Stanton number calculated from the-
data, StFM is the 1iﬁit of St as Reynolds number goes to zero, and Stc
1s the limit of St as the Mach number goes to zero. This idea was
suggested by Sherman [34]. Iﬁ supersonic flows, a shoeck wave arises

in the undisturbed uniform free stream flow from the disturbed region.

-6t/8t,, 0 +5t,, 8. )"
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N
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v033 .
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1 L) 1l il 1 i |||1L|lA 1 { I . N
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Fig. 9. Subsonic heat transfer from spheres [34].
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Because of this the local mean free path around the object may be
smaller than that of free stream. This affects the dimensions of the
Knudsen number, boundary layer, viscous layér, merged layer, and
collision rates, and eventually differeﬁt heét transfer phenomena from
the subsonie flow. Analyses of stagnation point and heat transfer
phenomena were investigated by Rott and Lepard [45], Kemp [46], Herring
[471, ProbsLein and Kemp [48]. Ting [49], Van Dyke [50, 51, 52], Hick-
man and Giedt [53]. Wittliff and Wilson [52]}, Potter and Mill [55],

and Carden [56]. Details will not be discussed here, since this re-

port is mainly concerned with the subsonic flow.

4.1.2. 8Slip flow regime

In the slip flow regime, there is a velocity slip at the wall
[l, 22]. Theréfore, the work done on the ﬁall carries heat transfer
which is different from that of free molecule flow. The gas density
is slightly less than that characteristic of a completely continuum
flow. In the slip flow, there are three important, but interfelated,
parameters, the Mach number M, the Reynolds ﬁumber Re, and the
appropriate Knudsen number, M/Re or M/vRe [1]. These parameters serve
to indicate compressibility, viscosity, and rarefaction effects,
respectively [1l]. The Knudsen number is on the order of 0.01 to 0.1
[25]. The rarefaction effects are associated with very strong
_compressibilitcy and:viscous effects [1].

In genéral, the boundary layer will be 1éminar and thick for
vefy low Reynolds number. Therefore, the boundéry layer is not strictly
applicable [22, 251. Intefaction effects betﬁeen this thick viscous

layer and an inviscid layer are expected [L]. The general effect of
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the slip flow and temperature jump condition is to increase friction

and heat transfer, as described in Eq. 48.

- K[BT/By + uuscau‘/ay):] y =0 (48)

with slip velocity and temperature jump boundary conditions [1]

_2~-a—={3u 3w aul
ulo) = s X (By) 3z pT ( )
o o

(49)
T(o) - T, = 2 ; = §_1II Pr (gg)o

given by Kennard_[lo], where 1 is viscosity and y is the coordinate
normal to the wall. Using Eq. 48, and various velocity and temperature
jump boundary conditions, Oman and Scheuing [57]lobtained closed form
expréssions for the recovery factor and for the heat transfer flow
over a flat plate, |

Burnett [58] developed equations associated with the Méxwell
molecules, using the thirteen moment approach. Thgse results are
presented in complete detail in references 59, 60, and 61. A method
of solution was suggested by many authors befofe Burnett [59, 62, 63,
64]. However, many'&ifficulties arise in the actual problem, even
though the solution method is good for monoatomic Maxwell molecules
[1, 64]. For example, air is composed of diatoﬁic nitrogen and oxygen
for the most part, and intricate boundary conditions make the problem
unresolvable, The.grder of the Burnett equatioﬁs is higher than the
order of the Navier-Stokes equations, so that additional boundary

conditions are necessary [64]. Also, present eXperimental evidence
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seems contrary to either the Burnett or thirteen moment equations, and
although the linearized Boltzmann equation has been solved by Wang-
Chang and Uhlenbeck [39], it was far from the practical case. Although
it is very difficult to get an exact solution as a closed form, mény
authors [57, 58, 539, 65, 66, 67, 68] contributed valuable regolutions

analytically and experimentally.

4.2, Flat Plate

The flat plate with zero angle of attack in a laminar floﬁ was
treated in terms of the Rayleigh problem of an impulsively started
plate [1, 18]. The inertia and viscous terms in the Navier-Stokes
equations can be simplified in this case [68, 70, 71, 72]. .

The héat transfer from the impulsiﬁely started plate was

calculated [4, 73] from the energy equation. Neglecting heat conduc~

2 2
3 ‘

tion terms such as (? HF%) as being small in comparison with (k §~%-,
ox ' ' 3y

and -also neglecting the convective terms in y, only the motion of the
plate at constant velocity u in the x-direction is considered., The

energy equation becomes

2,
use =il (50)
X
9x
with boundary conditions
at y =0, x>0
. _ 2 =0 2y X faT
Ty=0 i vy + 1 Pr (By) =0 (51)



atx =0,y >40

T = Tf {= free stream condition)

For accommodation coefficient a = 0.8, and for v = 1.4, the solution

of Eq. 50 becomes

e erfe X, = 1+ 2 Xy {52)
'z

where

x, = -\RePr/6.9M2

and

Nu h
St RePr uplp

Unfortunately, at present there'ig no experimeﬁtal data to.
confirm Eq. 52; however, it is reﬁorted [3] that its accuracy is about
10 - 15 percent error. This estimation was baséd on the accuracy of
the skin friction relation which was developed for the flat plate in
the translation and glip regime using £he same technique [3, 17, 34].

It should be pointed out here that Eq. 52 was developed essentially
for the slip flow regime and that its extension to the transition regime
implies the increase of 1ts error in this regime,

Drake and Kane [73] solved the heat tranéfer from a flat plate
for the transition‘regime, neglecting dissipation terms and assuming
canstant properties; but considering a surface temperature jump boundary

condition, Solvingﬁthe energy equation thrqughiLaplace transform yilelds
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h x Re Pr Re Pr
x _ Pr x 2,25 Tx 1.5 ,’ X
= g 7 eXp (———e Mz ) erfc 5 M (53)

where

- (2 - o) vy
5 = 1.996 - T

The average Nusselt number can be written from Eq. 53 by
integrating along the plate length te x = L, remembering & = 1.48,

Pr = 0.72 for air.

h
Tu average = —-
_ k
Re Re Re
= 2.25 M exp (———-&—5) erfe '—""—&-"2" -1+ '-g"- —-—-"&—-E
: 1.35M 1.35M V7 11.35M

(54)
From Eq. 54, the average Nusselt number for the continuum regime
where the Reynolds number is véry large and Mach number is small can

be predicted.

Nu = 2.19 v"ReE - (55)

But actually, the constant is four timesras large, compared to
experimental resu1t§ [73].

Accuracy of Eq. 54, compared with the results of experiments,
is predicted within 20 percent by the analogy of the skin friction
experimental data of the flat plate (34, 73].

Oman and Scheuing [57] obtained closed form expressions for the
recovery factor and for the heat transfer in laminar slip flow over

a flat plate,
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4.3, Sphere

The problem of obtaining experimental results for heat transfer
from a sphere in the slip and transition regimes is complicated by the
fact that unless the sphere diameter is very small (0.001"), the Mach
number must be large enough to establish the flow in the slip regime
[43]. Ordinarily, this means that the flow is supersonic. In such
a case, a shock wave exists in front of the sphere and the conditions
behind this shock wave must be considered before any attempt can be
made to calculate the heat transfer. Fortunately, in the rarefied
subsonic flow at a very low density, such a shock wave is not present
and, therefore, offers no real problem [3], Kavanau [43]-has developed
an expression for thé rarefaction correction torthe continuum solution
for heat transfer from sﬁheres. His expressioﬁ-represents the experi-
mental data to within 10 percent. Kavanau obfained_the following

relation for the avé:age Nusselt number in the‘slip flow:

Nu,, = - X7 ' (56)
14 3.42 (RI:PL_) u.©
where
Nu © = average Nusselt number in the continuum region
M ; Mach number
Re = Reynolds number
Pr = Prantdl number

Equation 56 can also be predicted from Oppenheim theory for the sphere
in the near free molecule regime, which is very important to the calcula-
tion of heat transfer from the sphere in the transition regime. Drake

and Kane [73] gave a solution for No © as
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(57}

where
D = diameter of sphere

¥2RePr

Ct.l.=
and
chxle) and Yl(#lﬁ) are the Bezssel function of the first order
of the first kind and second kind, respectively,
Kavanau [43] obtained the average heat-transfer coefficients for
spheres in a subsonic air stream for the slip flow regime in the range
of Mach number 1.75 < Re < 124, He also estimated the maximum
uncertainty in the determination of the heat transfer coefficient to
run“as high as 25 percent. According to his paper, the error is
mainly from the inaccurate value of Mach and Reynolds numbers, and the
maximumrrelative errors of these quantities vary from 0.1 to 25 percent.
Drake and Backer [74] p;rformed experiments on spheres in super-
sonic flow. The Ma&h number range was 2.24 j_M.s_3.50 and Reynolds
nupber‘range was 16 E_Re < 980. They reported that the maximum error
in calculating the ﬁﬁtal heat transfer coefficient might possibly be
7 to 8 percent, maiﬁiy due to the recoéding of iﬁstruments, such as
the potentiometer at low temperature (0.5°F).-7
It should be'ﬁoted here that Eq. 56 was.derived by Kavanau [43]

for spheres in a subsonic flow for the slip fldw‘regime. However, Drake
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and Backer [74] and Eckert [3] pointed out that Eq. 53 is applicable
for supersonic flow in the slip flow regime,

For the transition flow regime (10—1 < Re < 102) there is not
enough experimental data for the low Reynolds number region, Re > 10_1.
But for 1 < Re < 20, the experimental data for various subsonic Mach
numbers are cvailable from Kavanau's papcr [43], and Eq. 56 predicts
the shapes of curves very precisely for subsonic Mach numbers. The
inaccuracy is as high as from 0}1 percent to 20 percent [43], due to
the inaccuracy of measuring Reynolds number and Mach number [43]. For
low Reynolds,numbér, Re < l,-the free molecular flow theory by Sauet
[75] gave a good prediction which compares well to Eq. 56 in the
proximity of Reynolds number 1. Experimental data for this transition
flow regime are not available at this time, |

Figure 9 wasrdrawn out of Figs. 10 and li by Sherman [34], Thic.
figure iﬁplies the véry impcrtant aspecc of heat transfer coefficlient
in the transition and slip regime by correlating three quantities; (1)
F(M, Re), the measured quantity in such dimensicnless form that it
becomes independent of Re in the free molecule iimit, (2) FFM(M), tce
limit of F‘as Re -+ b: which is generally available from theory, and (3)
FC(Re), the limit of F as M + 0, which may bc acailable elther from
theory or from expeﬁiﬁents in viscous liquids. The transition curve
approaches this line asymptotically in the concinuum limit, and approaches
this line asymptotically in the free molecule limit (Fig, 11). Within
the experimental accuracy claimed for the data of Fig. 10 (the maximum
error for the average overall convection heat transfer coefficient, h c?

. 1s possibly 25 percent [43], the elimination of apparent Mach number
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dependence is perfect for the heat transfer coefficient of a sphere if
we examine Fig. 10 carefully.

This is obviously true directly from Eq. 56. Rearranging Eq. 56,

Nu = ——1 ~(58)
. 1 1
Nu + Nu
c FM
Qr
-1
Nu.
s e (59) .
“eM UM Ye
1+ -
Nu
- C

Therefore, in log-log scale of Nuc/Nu versus Nu/NuFM, Eq. 59 is close

FM

to the straight line of log (Mu/Nop )= log (St /Sty ) which passes

ny)
through point {1.1) in the transition and continuum regime, The
deviation of the curve from a straight line occurs at tﬁe beginning of
the transition regime, and the reason is not quite clearrat this time.
But the generalized approach will be given later for this phenomena.
Figure 12 [43] shows the possibility of the existence of one

dominating curve in the subsonic transition regime, which is the first

indication of the interpolation formula.

4.3.1. Accuracy of experimental data for sphere

The possible scurce of errors for measuring ﬁhe total heat
transfer coefficient is [43]:
1. From the recording potentiometer (Max. 10 percent)
2.  From the time-history measurement (Max. 2.5 percent), for
both the average overall convection coefficient (hc) and

the average overall radiation coefficient (hg)
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Fig. 12, Correlation of heat transfer from spheres in rarefied sub-
sonic airAflow [43].

3. Due to radiation-conduction correction which amounts to 50
percent of the total heat transferruncertainty (hc + hr =
25%).
Therefore, the maximum uncertainty in the average convection heat

transfer coefficient (hc) is

25%2 = 0.5 + 12.5% = 25%

This uncertainty in hc will be transmitted directly to the Nusselt
number, neglecting deviation of conductivity (3k/k) and characteristic

length (3L/L). The above discussion of uncertainty was reported in

reference 43. Analysis of the experimental data with respect to the
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theoretical values, Nu_ = l/(l/NuC + l/NuFM), shows that the maximum

T
uncertainty runs as high as 9.1 percent as shown in Fig. 13. This
phenomena suggests that the interpolation rule can be reasonably
applied to the data. Considering the scattering of the data in the

transition, and slip flow regimes, the actual uncertainty may be within

7 percent, which is close to the results of the cylinder.

4.4, Cylinder

Heat transfer from cylinders in the slip and transition regimes
~ produces effects similar to those described for spheres, as was pointed
out by many investigators, including Eckert and Drake [31.

Sauer and Drake [75] presented a theoretical formulation for
convection heat transfer from hdrizontal eylinders in a farefied gas.
Their solution predicts the trend of the data satisfactorily. However,
- some question.remainsiregarding the réprésentative magnitude.

Baldwin 176] presented some -experimental data for the heat
trangfer coefficient in the following range: |

Mach ﬁumber (M) 0.05 to 0.80

Reynolds numbef (Re) I to 75

Knudsen number (Kn) 0.009 to 0,077
Baldwin confirmed théf his data and the theory ofESauer and Drake {753]
had the same trend Eut that the theory falled to fill the data quantita-
tively. , |

The data from Stalder [l?]_covers the range 2.0 < M < 3.3 and
0.28 < Re < 203, The‘Reynolds number is based 6n:the free stream
conditions and cylin&er diameter, Stalder [17] f;ported that heat

transfer data can be represented with an average deviation of +6 per-

cent by the following relation:
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Nu. . = 0.132 Re2:73 (60)

10 10

where the subscript 10 refers to the fact that the viscosity and thermal
conductivity were measured at tunnel stagnation temperature, and the
density was elevated at free-stream conditions.

Equation 60 correctly represents the heat transfer data in the
slip and transition regimes for cylinders in supersonic flow where the
structure of the shock wave which forms in the rear of the cylinder is
well established. This leads to the conclusion that Eq. 60 may not
give satisfactory results if it is to be applied to the case of sub-
sonic flow where no shock wave exists,

Kavanau [43] indicated that his analysis for heat transfer from
spheres compared favorably to the results for cylinders. This indicates
that Kavanau's anal&éis for heat transfer from.spheres can be adequately
applied to cylinderé; Eckert and Drake [3] confirmed this fact by
indicating that the heat transfer effects of spheres and cylinders are

very similar.
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44,1, Accuracy of experimental data for cylinder (wire)

' The accuracy of the heat transfer coefficient for cylinders is
the same as that of spheres in subsconic rarefied gas flow because of
the same characteristics of velocity and temperature distribution [3].
Uncertainty (or difference} between the theoretical value and experi-
mental data for raréfied gas region runs as highgas 6 percent for sub-
sonic flows which ocgur in the slip flow regime. TFor selecting the
gample data, at least 2 percent errors exist inf;eading the plot Nu

versus Re.
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As mentioned before, the interpolation rule

Nup = =3 T R
Nu_ + Nu
™
where
Nu_ = 0.43 + 0,48 VRe (14)
) +1 1 —52/2 1 32 32 ‘ 52
Nu =RePr1——u——e - I (——-—) + S |1 (—)+I (—
f Y 4 s o \2 o \2 1\ 2/

s=\g—-M | (253)

was‘taken as a theoretical computation, where the input was the standar&
atmosphere [753].

Comparison of the results of Egs. 14 and 25 and.the experimental
data is shown in Fig. 16. The‘unéertainty, ANu/NuT x 100, is taken
as a vertical axis, whereas Reynolds humber is the horizontal axis,
and Mach number is a parameter. The experimental data were taken from
references 3, 7, 75, 34, and 78 for subsonic flow. The_graph shows
that the uncertainty increases as Mach number increases, reaching maxi-
mum (ANu/NuT x 100) percent = 6.1 percent at p ; 0.8 and Re = 13. As
the experimental data were obtained from many authors, the plot scatters
very widely, and the large spread in the data pfesents firm conclusions
about the variation ;f the heat transfer coefficient with the Mach and
Reynolds number. But this fact also serves to improve the maximum
uncertainty to within 5 percenf, rather than 6;l'percent for subsonic
flows. Therefore, the interpolation formula, Nui = 1/(1/NuC + IINUFWJ
is reasonably good to cover from free molecule flow through slip and

trangition up to the continuum regime,
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5. General Trend of Uncertainty of the Heat Transfer Coefficients in
Ratrefied Subsonic Flow

The same argument discussed in Section 3 for the free molecule
regime and transition regime can be drawn for flow perpendicular to a
cylinder. For the slip flow regime, the game argument can be applied .
'by the reésonably accurate calculation (the uncertalnty in reading the
experimental data is approximately 2 percent compared to the average
heat transfer coefficient), i.e., the interpolation rule can be extended
reasonably to the slip flow regime.

Experimentai data and the free molecular theory depart from each
other as they approéﬁh the slip flow regime. This departure is toward
a reduction of momeﬁtum and energy exchange rétes, which is ekpected
as a consequence of slip and temperature jump effecté at the surface,
The reduction émounts to about 1 percent of NuFﬁ when Nuc/ NuFM = 0,1
[34].

In plots of NLi/NuFM versus Nuc/HuFM, many transition experiments

look alike, regardless of the body shape or quantity measured [34].

This suggests, for the plots of function ratio, that F/FFM versus Fc/FFM.
By examining the plots, it was found that the body shape was not
lmportant in either continuum creeping flows (R << 1) or very low Mach
number free moleCulé'flow. Therefore, the dependence on body shape is
negligiblé for subsondc transition flow. Summafizing the above argu-"

ment, we deduce a very important interpolation formula, which applies

adequately to the entire transition regime. The interpolation rule is

_ 1 )
Nu = —1;—'-—-—'—'-—1——- - (58)
Nu Nu :
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Equation 58 is purely deduced by observation of experimental data for

all regimes (free molécule, transition, and continuum regime, respectively).
By reasonably accurate calculation, the interpolation rule can also be
extended to slip flow regime, as stated previously.

The following plots support the above argument very well.
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The above two curves are the experimental results for flat plate
drag coefficients and Stanton number variation for sﬁheres in the sub-
Sonic transition regime. Surprisingly, Eq. 57 applies well to these

curves. By this analogy, if we define the following parameters,

F = F(Re,M) = any dimensionless characteristic quantity which is a
function of both Re and M.

FFM = FFM(M) = function only of Mach number. Geometry is not important
for the free molecule flow.

F = fc (Re) = function only of Re in subsonic continuum regime ag M
v . | (D)

then, any characteristic quantity for the subsonic transition regime

can be formulated by .

1

1 1

+
FFM(M) Fc(Re)‘

F(Re,M) =

(62)

F(Re,M) for transitién regime would be any cha;acteristic quantity, say,
Stanton number [St(Rg,M)]; drag coefficient [FD(Re}Mi], or Nusselt
ﬁumber [Nu(Re,M)], etﬁ. Equatien 58, the heac_;;ansfer interpolation
rule for the transition regime, accurately represents the departure
between continuum and slip flow regime, and algo:that of the free
molecule and transiﬁion regime {34]. The inaccuracy of this interpola-
tion formula Eor all regimes in subsonic flows guns as high as 7 percent
for spheres and 5 percent for cylinders, as shoﬁn in Figs, 13 and 16,

respectively.
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PART II

RECOVERY FACTOR

1. Introduction

The direct measurement of static temperature I in a moving -
fluid is of great importance in heat_transfér measurements. The |
temperature indicated by any thermometer immersed in the fluid is
higher than the static temperature, for there is an increasa—of
temperature through fhe boundary layer'from the statié'température at
the edge of the boundary layer to the recovery temperature Tr at the
surface.

T. will, in general, be different on different parés of the
surface, depending-on geometry, Reynolds number, etc., and the
thermometer will indicate a mean recovery temparatﬁre.

The recoveryrtemperature‘is expressed nondimensionally by a
recovery factor r défined by the equation [3]

2

T, - T, =T oy _ (63)

or, in other terms, the recovery factor is usually defined as

T =T
r EoN

T -T

Q oG

T = (64)
where the subscript o refers to the stagnation condition. The accurate
determination of the recovery factor is very important in heat transfer
measurements, recovery temperature and heat flux.

The following discussion concerns determination of the recovery

- 54 ~



factor in the continuum, slip and transition, and free molecular

regimes for the flat plate, cylinder, and sphere,

. 2, Continuum Flow

2.1, TFlat Plate

2.1.1. Laminar boundary layer on a flat plate

The energy equation which describes heat transfer in a laminaf,

'stéady boundary layer, including the effect of internal friction is 3]

2 ‘ 2 :
AT, BT _ 7T w3y |
Yo tv oy @ ayz + pCp (By) (63)

The situation to be considered first is the one with an adiabatic
surface, The boundary condition is
dT

&0 aty=0

T = TDo at y = =

The recovery field is identical with that of low flow velocitles as

1oﬁg as the properties are considered constant. A solution ﬁo the
problem to determine the temperature field in the boundary layer was
obtaine& for the first time by Pohlhauseﬁ {6]. A transformation to a
total differential equation is possible by introduction of the ﬁarameters

f and n and by use of the following parameter,

T - T,
c:
£ ui/ZC
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which expresses the temperature field in the boundary layer in a

dimensionless form. Noting that

1 o
n= 2 y VX
and
Y
f(n) = —
Yvu_x
where
¥ = stream function
Equation 65 becomes
9 .
~dg dg L2
——-§£+Prfa~;]—-]-:-+%d—§—=.0 (66)
dn : dn .

A solution of this equation can be obtained by the method of variation

of coefficients and results in

= 0 . .
L, = —% J ‘¢dn - —%-J ddn 7 (66.a)
o] ' [s)
where ‘ _ o
n Ny aN2 n
¢ = exp (— Pr f fdn J (i%) exp |Pr I fdn| dn (67)
‘ ' 0' dn’ o

Q

The assumed plate surface temperature is its recovery temperature, and

‘the value of the parameter gr at the wall is equal to the recovery
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factor r. The recovery factor is, therefore,

| o "o N/ o\2 ' n
Pr d°f :
r = —¢ J exp(- Pr J fdn J —5 | exp Pr J fdn| dn ] dn (68)

o o] o o

Values of the recovery factor have been obtained by numerical
integration of this equation. Busemann [3] hag shown that these values
can be approximated in the Prandtl number range from 0.5 to 5 by the

- simple expression
r = VPr - (69)

For low velocity boundary layer, the heat flow at the plate
sufface per unit area and time isldetermined by the differenqe Between
the actual wéll temperature and the Eemperature_of the free stream
outside the boundary layer. The heat flow in a:high—velocity boundafy
iayer is given by the same relation as the heat flow in a 1ow—vélocity‘~
boundary layer excepf that the‘temperature potential determining the
heat flﬁx for high velocity is the difference between the actual wall

temperature and its recovery temperature.

For high velocity boundary layer [3]

o3 G 1)

For low velocilty bouhdary layer,"

where
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n - J Pr fdn
J e o} dn
gt = -2 70
o (70)
- ™ J Pr fdn
J e © dn
[o T

2.1.2, Turbulent boundary layer over a flat plate

Since the energy equation for the boundary layer is linear in
temperature, then all the relations derived for tﬁe determination of
heat flow over a flat plate for the laminar boundary layer with low
velocity apply for high velocity after replacing the free stream
temperature.by the recovery temperature. This rule holds also for
the turbulent boundary layer. The only additional knowledge required
is that = of the reccvefy factor for the particular situation,
from which the recovery temperature‘can be determined, For turbulent
flow, the following:relation has been derived thgoretically [79] and

verified for Prandtl values near 1 [3].

1/3

r = (br) 1)

It has been established that the heat transfer relation for a
constant property fluid approximates thé conditions in high veloecity
flow of gases provided the pressure in the flow field is constant and
the property values are introduced at an apprbpriately chosen reference
,température. |

It was found that the relation r = vPr accurately describes the
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results of the calculations for gases with variable properties, provided
the temperature differences Tr - ‘1‘oo {when Tm = static temperature) are
such that the variation of specific heats in this temperature range can
be neglected [53]. For very large supersonic velocities, when the varia-
tion of the specific heats becomes important, the Prandtl number is

introduced at a reference enthalpy [3]

tk=4 +0.72(i - 1,) (72)

In laminar flow at a moderate temperature, the recovery factor
is 0.84. For the turbulent boundary layer flow of air over a flat
plate, a-value of 0:88 was measured [3]. In the transition region
between laminar and turbulent boundary laye?s, the recovery factor'
rises from the value of 0.845 to a peak [0.89: gnd then decreases to

the turbulent value of 0.88 as seen in Fig. 19.
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Fig. 19. Laminar transitional and turbulent temperature~récovery
factors r for a (measured on a come at M = 3.12): [80]

a. 'High stream turbulence
b. Low stream turbulence
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Van Driest [5] made the assunption ub = constant as a first
approximation, and employed a method of successive approximations. The
solution ié developed for a gas with Pr = (.75, constant propertles,
¥ = 1,40, and the Sutherland law for viscosity. Despite the temperature
dependence of the fluid properties, the equation r = /Pr is again found .‘

to be a good approximation [3].

/2

As discussed abové, in laminar flow r = '(Pr)1 = 0,845 for.air;

/3

and in turbulent air flow, r = (Pr)l = (0.88. Experimental values

confirm the above equations very well, and uncertainties are approximately

1 percent for both cases; i.e., uncertainty for laminar flow = gfggg x

100 percent = 1 percent, and for turbulent flow = %;%%%'x 100 percemt =

1 percent,

2.2. Cylindrical Body

Some'confusidn exists conéé%ning the recovery factor values for
blunt bodies (cylindrical, circuiar,.etc.).

Thompson [8l] was interested in the low velocity case; His‘
'experimental’data for thermistors yields recovety factor values between
0,70 and 0.80. The results of Thomson were closely matched by the
results obtained by Hottel and Kalitinsky [32], wﬁich are also reported
by Moffat [83]. Hottel and Kalitiﬁsky [82] obtained the following
values for low speed flow: |

For wires nofmal to flow; v = 0.68 % 0.07

For wires parallel to flow; r = 0.86 £ 0.09

They also reported recovery factor values for small thermocouple
balls attached to very thin wires. Values of 0.74 with normal flow

and 0.78 with parallel flow [76] were reported,
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2,2.1. Degree of accuracy for cylindrical body

The results mentioned above reveal an inconsistency in the
recovery factor values for wires normal to the flow in subsonic flow
and supersonic flow. Many investigators agree [43, 82, 83] that the
proper value for the recovery factor in supersonic flow is about Q.85
and' that Mach number has no effect on recoverylfactor. The disagree-
ment , howevet, invelves the correct value for r in the subsonic flow.
If one chooses the value of 0.85 for r iﬁ the supersonic regime and the
value of 0.68 in the subsonic regime, an abrupt discontinuity exists
at Mach number unity. Since many investigatota agree that r is
independent of Mach number variation and that there is no slow change
detected in the neighborhood of Mach number unity, then this is not
physically possible;

On the other hand, Schubuer and Tchen [84]_ reviewed the experi-
mental results ef meny investigators in both suﬁeonic and supersonie
flow regimes; and reﬁorted that the recevery factor for cylindricel
bedies in laminar flow has the value of Q.85 fot both subsoniec and
supersonic vegimes. Haworth [85] indicated thet the recovery factor
for blunt bodies has the value of Q.85Iin lamiear flow. Van Driest
.[5] pointed. to this'same conclusion.

Hot tel and Kalitinsky [82] pointed out that their data for
subsenic flow showed:no effect of Mach number variation on the recovery
factor values. This important eonclusien was also pointed out by
Schubuer and Tchen [84] who indicated that in their reviews of experl-
mental data of many investigators in both subsonic and supersonic

 regimes, they found practically little or no chenge in the recovery
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factor values due to Mach number, It was pointed out by Kavanau [43]
and Atassi and Brunm {21] thét at low speeeds, the difference between
the adilabatic wire temperature Tr and the gas stagnation temperature
Te, is no more than a few degrees centigrade. Therefore, it is
difficult to determine the recovery factor with sufficient accuracy by
direct measurement of the a&iabatic wire temperature.

Itris believed that the recovery factor value for wire in normal
flow shouldube'taken as 0.85 in laminar flow and 0.88 in turbulent flow
in both the.subsonic and supersonic regions, respectively., Therefore,
it is believed that the'Values obtained by Hottel and Kalitinsky [82]
and Thomson [81] are in error.

- Some investigators [3] indicated that thé.results of measure-
ments on a cylinder:in a subsonic air flow norm;i to its axis yield
recovery factors at the leading edge up to valués approaching unity
at the stagnation point. Actually, the recovery'factor does not vary
significantly from 0;84 or 0.88, recommended féfrlaﬁinar or turbulent
flow, respectively. 'The reason for the errongoué conclusion reached
in reference.S is that the rééovery temperatureé for leading‘edge-
surfaces are higher'than for other areas of théIBody for a given speed
and ambient altitude cpnditions. This has beeﬁbﬁisinterpreted as be-
ing the result of an-increase in the recovéry factor at the leading
edge.

The reason for the higher recovery tempéféture at the leading
edge surface is due ﬁo the fact that the local éfatic temperaﬁure is
considerably higherlbecause of the adiabaticallf compressed flow region

in this area [87].
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Uncertainty caleculations for both laminar and turbulent flow

are as follows for a cylinder parallel to the flow:

Laminar (both subsonic and supersonic) uncertainty = 8'3; X

100 = 6 percent,

Turbulent (both subsonic and supersonic) uncertainty = g'gg X

100 = 5 percent.
These values are purely empirical, and corrected bf,several
investigators. Also, the uncertainty may come mainiy from the readihg
error of the data and instruments. If we consider this effect, the

actual error would be smaller than that reported.

2.3, Spherical Bedy

It was pointed out by Haworth [86] and Eckert and Drake {3]
that the shapes of the flow around spherical and cylindrical bodies
aré similar. This leads to the conclusion that the ahove discugsion
copéerning cylindrical bodies applies as well to spheres. Haworth [86]
suggested the value of 0.85 for the recovery factor in laminar flow,
regardless of Mach number. Eckert and Drake [3] and Van Driest [5]
suggested the same value of 0.85. Beclwith and Gallaghef {87] showed

that at any poiﬁt around the spherical body, the recovery factor values
closely follow the value given by the 1&minar boundary layer r = YPr
when the flow is laminar, or the value given by the turbuleﬁt boundary

/3

layer r = (Pr)l fdr turbulent flow.

2.3.1. Degree of accuracy for sphere a

For continuum flow, the recovery factor is given by the relation

/ /3

r = (Pr)l 2 for laminar flow, and by r = (Pr}l " for turbulent flow.
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Measurements for the laminar recovery factor show a close agreement
with the relation r = (l?r)l/2 = 0.845 as shown by Van Driest [5] and
Haworth [86]. Experimental data for laminar fiow by Schubuer and Tchen
[84] and Haworth {86] show that the laminar recovery factor values are
between 0.825 and 0.865. The data also indicates that the turbulent
recovery factor varies between 0.875 and 0.890 in close agreement with
the relation r = (Pr)lf3 = 0.88, Figure 20 shows thé argument méntioned
above for various.cones. Many investigators agree that the general
.trend of the recovery factor of spheres is similar to that of flat
‘plates.
The uﬁcertaingy calculations are:;
Laminar flaw:: r=20.85*% 0.04
uncertainty = O'BES.QSO'BZS
Turbuient flow: r = 0,88 = 0.02

unéeftainty = 0'8900_82'875 x 10G = 3 percent

x 100 = 4 percent

The uncertainty ranggs'weré taken from the experimental data.

3. Free Molecule Flow

Heat transfer‘from a body to a rarefied géé stream in the Max-
wellian equilibrium velocity distribution can be calculated entirely
from the fundgmental notions of the kinetic theory of gases. The
results can be shown as a function of the ratio of the specific heats,
and are generally'iﬂ good agreement with the exﬁerimental data, so far
" as the molecular stfﬁcture of the gas is concerned [1, 58, 59]. ' It was
shown by Oppenheim [16] that the determination of correlated results

for a few fundamental shapes such as flat plates, horizontal circular
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Fig. 20. Variation of the temperature recovery factor of cones with
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cylinders, and spheres will enable the formation of results for more

. complicated cases, by synthesis of the results of these simple shapes.
The heat transfer in the free molecule flow is represented in terms of
the Stanton number and the thermal-recovery factor. An expression for
the thermal-recovery temperature Tr in the instance where Twall = const.,
is obtained when the heat transfer © is taken to be zero in the derived
equations.

In such a case, the recovery factor is [16],

R 1 F (73)
TET T Sy L \* Tz C
o Tw S“G+F
where
_nz
Ea%J' = dA
A 28vw
and

= _ 1 n(l + erfn)
F=x J 2s da
A
A = area of the shapes
U /v
n n/ |
‘ ﬁH = compecnent of mass flow velocity normal to the wall
V = mean molecular velocity
S =ufvs= J%jM; molecular speed ratio related to Mach number M

Figures 21 and 22 show the thermal-recovery factors for a flat

plate, a sphere, and a transverse circular cylinder in a free molecule

- 66 -



I,
l" L . ¥ 9 .
3] s | s 1-& SUBSCRIPT | REFERS TO A MONATOMIC GAS
] SUBSCRIPT 2 REFERS TO A DIATOMIC GAS
4 | 4 L - .-
‘ a1 ! RN
4 ) \H - { S J . s
T3] sp- A -4 — e -
] = | ( bl
2 -. dﬁ -0 [E-OT [ ! —
* 2 4 3 [ l N L_. .
+ d f ’ F . o'
2 g -
I I ' a i | Tl
o
T 1 ! if L | I ™ ' i jeo®
' ] ll i
0404 O ! o L . 0 i °0°
1 | g : :O/‘i’/"l—- ' i
-1 4] 9 _2/ :n A { L J oo i
- - / bu i l t . l i l :
-2 4 -2 - 3 / / r_.u...._rﬁ._.. - l M 'i'
) _ L] L 1]
‘s 02 o3 04 06 0B i 1.5 2 3 4 é 8 w0t
M o203 0s 06 o8 15 2 3 4 6 8 10 M
M2 02 03 04 06 08 | 5 2 3 4 6 8 10 M
Fig. 21. Thermal-recovery factors for a flat plate, a sphere, and a

transverse circular cylinder in a free molecule flow. _[16]

G-
4
Fiat plate, thermal contact, 8 = w/2
Cylinder
3 o

N

- Flat plote, thermal contact, 6 = 0

»

Madified recovery factor r’

o 2 3 4 5 6 7 g S 10
Speed ratio S

Fig. 22. Modified recovery factor in free molecule flow. [1]
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flow as a function of the speed ratio. They also clearly show that the
recovery factor in free molecule flow for a flat plate at zero angle

of attack is constant for all values of speed ratic and Mach number,
while the recovery factor values for sphere, cylindér and the flaf
plate at an angle of attack is a function of the speed ratio. However,
the recovery factor values of a sphere; cylinder and flat platé at an
angle of attack approach the value of the flat plate at zero angle of
attack at high Mach numbers. fop low Mach number in the free molecule
flow, recovery factor for the sphere and cylinder is constant,

It should be noted that the flat—plate results apply to any
surface making a conétant angle with the flow. Therefore, these results
apply to wedges and cones in comparison with the flat plates at anglés
of incidence'with_tﬁé‘flow, where the angle of incidence of the plate
corr35pond§ to half the opening angle of the we&g; or cone. The zero-
‘angle—flat plate correasponds to conditions occufring on a cylinder of
any cross-sectional sﬁape in axial flow.

A flaf plate inclined at an angle of incidence 6 to the direction
of flow can be treate& in terms of the flat plate normal to the flow,

then

. 2 2 .
rg(s) = by cos'® + x_(n) sine (74)

where

s sinb

n

a flat plate normal to the flow

Cp
Cy

subscript n

'Y=
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Generally, r (parallel flow) < Teyl (parallel flow) < rcyl (cross

plate
flow). Equation 73 indicates that for the case of flat plate at an
angle of attack, the recovery féctor in the free molecular regime is

a function of both the speed rate and the angle of attack [3, 16, 73].

3.1. Degree of Accuracy

Experimental data of Stalder [17] for_transvérse cylinders in
supersonic flow and.the data of Drake and Backer [74] seems to confirm
the Oppenheim theory [16]. For a sphere in supersonic flow, Drake .and
Backer [74] found that the overall recovery factors, when plotted
against ﬂﬁEYM, were shown to increase to val;es above unity at values
of YRe/M < 5; whereas at vRe/M > 5, the recovery factors were shown to
remain practically constant at a value r = 0.90°% 0.03. Therefore, the
uncertainty for vRe/M > 5 ruﬁs as high as 3 pefbent [74]. This effect
is one associated with the transition region, and is not the result of

nonadiabatic gas flow.

4, Transition and‘Slip Flow Regimes

~4.1. Introduction

Contrary to ﬁhe gituation in the continuum and free molecule
flow regimes, there ére no dependable theories to analyze and predict
the heat transfer aﬁ& recovery temperature in tﬁé slip and transition
flow regimes. Experimental data in these two rééimes is not very help-
ful either, | |
| There aresomé:experimental data for the récovery factor in super-
sonic flow for some geometrical shapes [17, 74, 33], but there are very

little data for subsonic flow [21, 33].
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~ Experimental data for cylinders and spheres show that the
rarefaction effects begin to show at about Kn = 0.02, Drake and Backer
[74] reported that the récovery factors start to depart from the
continuum flow values at about ReZ/M2 x 20, where the subscript 2 refers
‘to conditions after the detached shock [88].
Figure 23 indicates that the recovery factors at values of JﬁZiIMl

. » 5 are esséntially constant at a value of 0.93 * 3 percent, where the

1.2
© [T ™~FREE MOLEGULE FLOW ] ’ ,
AEF. 4 | ,
- - [ B e e St O o 7 -
P S
. . a thovsnv FACTORS
== " . A Hla ! |
! 'o . al| « a ; a .
&= 091 - s e ' G o
M - | |
. ; l
“ o0.8loz P W SR S L PP VOV S
- MEAN FREE PATH ., copo .
KSPHERE DMMETEHI NO 3 NDZZLE NO & NOZZLE
I UV a 050 InDia o 0.50 in Dia.
0.7fo. . N ‘* 1 & 025 Dis. a ©25 1 Dia.
. A Q010 In Qs o 010 tn Dis.
06 { * wd 0TS InDia. & 0475 In Do
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Fig. 23. Variation of thermal recovery factor for spheres in a
transition flow regime [74]. :

subscript 1 refers to conditions before the detached shock and where
R32/M2 = ARalel. At /EEi/Ml f 5, however, aqdvgs Vﬁgi/Ml + 0,. the
values of the recovery factor increase rather sﬁarply to values greater
than unity, indic;tiﬁg that the recovery temperature attained by a sphere
in alstream of gas at a large Mach number is greater than the to£al
temperature of thé flow. '

The data of Stalder [17], which is shown in Fig. 24, shows that

fully developed free molecule flow oeccurs for Kn .of approximately 2.0
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Fig. 24. Thermal recovery factor for transverse cylinders in supersohic
flow [17].

and higher, and that for Kn > 0.2, the recovery factor r exceeds unity
even though the free-molecular flow is not full?IdEVEIOPEd. ‘Figure‘24
aléo'shows that the data in the range of Kn from Q0.2 to 2.0 are
corrected by Kn alone with no systemetric Mach number effects shown.
Further, it is evident that for values of Kn > 0.2, the recovery factor
exceeds the value of unity, presumably due to the development of free-
molecular flow effects., The experimental data clearly show the trend

of the recovery factor in the slip and transition regimes. The recovery
factor is equal to that of the continuum flow and stays constant for
slight increases in rarefaction effects, Then these rarefaction effects
sfart te increase the recovery factor aSymptotiEally until it approaches
-the value which corrésponds to fhe free-molecular regime. |
Vrebalovich [33] reported a collection of exﬁerimentai recovery

factor data for both:supersonic and subsonic flow. These data are shown
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in Fig. 25, where

n-n c
n* =
n =N
FM c
T
- L _ _Recovery temperature (75)
n 'I.‘0 Stagnation temperature
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Fig. 25. Normalized recovery ratio versus free stream Knudsen number [33.] .

Figure 25 shows the same trend as Fig. 24

The supersonic flow

data show that in the slip and transition regimes, the recovery factor

is mainly dependent on Knudsen number and that Mach number has no effect.

However, the recoverj factor data clearly indicate that Mach number has
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a profound effect in the subsonic flow. The data show that for any
Knudsen numﬁer in the slip or tramsition fegimes, Mach number increases
causeAa correqunding increase in the recovery factor value.

Attasi and Brun [21] treported some recovery factor data for
wires at low Maéh numbers. This data indicate the same trend shown by
Stalder [17j.and Vrebalovich [33]. However, their data yield higher
values for the recovery factor in the slip and transition regime than
those reporéed by Vrebalovich [33] for the same Mach numbers. This
discrepancy is not surprising at low Mach numbers because it is very

 difficult to determine the recovery factor with sufficient accuracy
at low Mach number f33, 43]. The data of Vrebélovich [33] is more
consistent, which gives more confidence in its ;ccuracy. Hisg ex@eri—.
ment is successful with onlﬁ 1 percent‘error atieT = 0.5, M = 0.6
for a cylinder [33].' The curves presented are faired from the experi-

mental data by the variable,'n = Tr/To' where

T

" recoverf temperatufe of infinite 1éﬂgth

T
o

1]

gstagnation temperature
and are very close to the results of Kovasnay [89], in which he comn-
sidered end loss corrections of the cylinder at low Reynolds numbers.

This aspect is shown in Fig. 26.
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Fig. 26. Recovery temperature ratio in transoni¢ flow [33].
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4.2, Sphere
Figure 27 shows the thermal recovery factor r versus Reynolds number

for spheres in supersonic flow. The uncertainty funs as high as 5 percent,
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Fig. 27. Thermal recovery factor for spheres in supersonic flow [1].

4.3. Cylinder

Figures 26 and 27 show r versus Kn for different model diameters.
The effect of the increase of rarefaction on the trend of r as it
approaches the free-molecular value is apparent.. The uncertainty of the.
‘data runs as high as 4 percent. These data were taken for cylinders

held normal to the stream.

4.4. TFlat Plate

Laminar slip flow over a flat plate atrzefo angle of attack can
be treated in terms of the Rayleigh probleﬁ of an impulsively started
plate; The inertia'end viscous terms in the Naﬁier—Stokes equations can
be simplified in this case., Since a.reliable method for extending boundary
layer theory to lower Reynolds numbers is not yet available, and very
 little reliable heat t:anefer'experimental data for the case of the flat

plate are available at the present time, an approximate solution is ne-
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cessitated.
In a private communication, Morriasey [91] reported an empirical
formula used to interpolate from the free molecular récovery factors

to the continuum recovery factors as a function of the Knudsen number.

r=r + Kn(rFM _ rC) (76)
c En + 0.3 .
where
,rc = continugm flow recovery factor
= 0.88 for turbulemt flow
= 0,845 for laminay floﬁ
and o
Tom = free molecular flow recovery faqtdr

The free molecular recovery factor depends on the geometrical shape
and the speed ratio which was mentioned in Oppenheim's theory.
Koshmarov [92] obtained a similar relation from his own heat

transfer experimental data involving a sharp cone. By plotting

r-r Mpy T
€ versus -
Teom — T Re 1 Te

he cbtained a series of parallel straight lineg with the half angle at
the cone apex as a parameter, The subscript e_refers to thé total
equilibrium conditién, while the quantities wiﬁh ﬁo subscript refer to
the undisturbed flow far away from the cone. |

The recovery factor in the tranéition regime 1s, as shoﬁn in
Eq. 76, a function éf the Knudsen number., It is also a function of the

speed ratio and the angle of attack in the same manner discussed before
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regarding the free-molecular recovery factor. Equation 76 was apparently
obtained by smoothing out the existing experimental data in the'slip and
tf;nsition regimes. This equation compares well with the exiéting recover?
factor data-iﬁ supersonic flow [17, 33]. However, the comparison does

not seem to be very good in the case.of subsonic recovery factor data,

In this case, Eq. 76 yields values higher than the reported experimental
values. A better adjustment might be obtained if the constant 0.30 in

the denominator of Eq. 76 weré changed to a slightly higher value.

Some investigators [81, 82] reported their data in terms of

r -r : . r-r
[ | versus Kn. It should be expected that the quantity (_,___*E_)
r_. - r Tir -

FM c A"FM c

is a function of Knudsen number, Mach number and angle of attack, rThe
dependence on Mach number and angle of attack is apparent since the free
- molecule recovery’fagtor ToM is a funétion of both the Mach number and
‘the angle of attack. The dependence of Iy OR Fhe Mach number is pro-
nounced in the aubsgnic flow. This leads to the conclusion that Eq. 76 -

should be written as

= _ (77

where the parameter é is a function of Mach nuﬁber. Morrissey [91]
‘chooses the numericéi valuelO.B for ¢, which makes Eq. 77 agree with
the supersonic data.s Fér low Mach numbers the value of ¢ seems to vary
from 0.5 to 0.9, for Mach numbers 0.9 to 0.1, respectively. Oman apd
Scheuing {57} obtained the following closed formiexpression for the
recovery féctor in laminar slip flow over a flat plate for Pr = 0,72

and thermal accommodation coefficient « = 0.9
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2

TR
= [4y/(v + D] [a/(2~0)] [-ui} + /7t [1 - (usxum)ﬂ

As us/uOo increases toward the free molecule value, r increases to a
Value greater than unity. The assumptions involved, therefore, appear

to account for the predominant slip flow effects.

4.5, Degree of Accuracy

The uncertainty in the value of ﬁhe recovery factor in the sliﬁ
and transition flow regime may be argued as follows: |

a. The reported data for the recovery factor in the transitioﬁ
regime seem to have a maximum uncertainty of 5 percent, which is the
ratio of the difference between the experimental and theoretical valuesg
to the theoretical value [17].

b. If it is decided to use Eq. 77 to obtain fhe'recovery
factor in the transition regime, then, since r in the transition regime
depends on Tom and . its uncertaintj dépends_bn the uncertainty of
both L anq.rc. In Eq.. 77, 1f the turbulent value of 0.880 is used
for the continuum récovery factor, then the reﬁbrted data fall between
0.825 and 0.865. With respect to the free—moieéular recovery factor,r
experimental data aéree with the Oppenhein theéfy. Combining the uncer-
tainty in both the continuum and free molecular.recovery factors yields
the conclusion thatvthe uncertainfy in the récévery factors in the
transition regime might run as high as 7 percent. With respect to the
flat plate, this unﬁertainty might be conservaéive.due to the effects of
changing the angle‘éf attack. The angle of atééck has no effect oﬁ.the
‘reCOVEry factor in ﬁhe continuum flow [84], while Oppenheim theory correctly

predicts the influence of angle of attack on the recovery factor im the
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free molecular regime [17, 85]., These two conclusions are important in
predicting the effect of the angle of attack on the recovery factor in
thg slip and transition flow as can be seen in Eq. 76. Equation 77 ﬁas
used to predict the recovery factor values in the slip and transition
regimes. Examipation of Eqs., 74 and 75 shows that the effect of the
éngle of attack is more severe at.low.spéEd than high speed (Fig. 22).
Figure 28 shows the variation of reéovery factorsrat a fixed Mach
number. The experiment [33] and theory confirﬁ the fact that as Mach
number becomes high, the recovery factdribecomes lower for a cylinder;
Figure 29 shows the trend that for decreasing Knudsen number, the

recovery tem?erature ratio becomes smaller‘[33].
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SURJECT INDEX

Absorptivity of surface, 26
Accommodation, complete, 13
coefficients, (see Momentum and thermal accommodation coefficients)
Accuracy, transition and slip flow regime, for sphere, 43, 44
for cylinder, 46
of recovery factor in continuwum regime, for cylindrical body, 61
for spherical body, 63 .
for cones, 65
for free molecule flow, 69
for transiticn and slip flow, 77
(see also Uncertainty)
Actual error, 63
Adiabatic recovery temperature, 23, 26
Adiabatic surface, 55
Adiabatic wall temperature, 19
Ambient altitude conditions, 62
Angle of attack, 20, 68
local, 26
zero, 27
Analogy of Nu = Nu(Re, M), 31
Apparent Mach number, elimination of, 41
Asymptotically in the contipuum limit, 41
Axial flow, 17

Bessel function of first order, 40
modified, 18
Boltzmann, equation, 11
linearized, 36
¢constant, 26
Boundary condition, 36, 53
for flat plate in transition and slip flow, 34, 35
~ for temperature jump, 35, 36 ‘
Boundary layer, 34, 54
concept for flat plate in continuum flow, 4, 5
for cylinder in the continuum flow, 6, 7
development of, 4
for flat plate in continuum flow, 5
for high velocity, 57 o
laminar, for flat plate in continuum flow, 4, 55
for low velocity, 57
turbulent, for flat plate in continuum flow, 5, 58
Bunett equations, the order of, 35

Characteristic, length, 2, 13, 32
dimension, 11
quantity, 53
Collision, 32 ,
between molecules, 2, 3, 12
between molecules and body (wall), 2, 3
the number of, 3 ,
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Compressibility, 34
Concave surface, 26
Concentric cylinders, 12, 13
Concentric spheres, 12, 13
Cones, 17, 65, 638 ‘
Continuum creeping flow, 51
Continuum flow, 1, 55
definition of, 3
usual concept of, 3
Continuum flow regime, 4 - :
boundary layer of flat plate, cylinder, sphere, (see Boundary layer)
eylinder, 6 : ‘ : :
flat plate, 4, 55
sphere, 10
Convection, only, 24
combined, 26
Convective body in free molecule flow, 22
Convective effect, 18
Convex, body, 21
surface, 26
Correction parameter, dimensionless, 32
Correlation, 31
of heat transfer for aphere, 44
of three gquantities, 41, 43
Critical value of Reynolds number for flat plate, &
Cross flow, 69
Cylinder, 6 27, 45 56, 74
adiabatic wall temperature 20
angle of attack, 22, 25
average film heat transfer coeffiCLent 9
experimental resulcs, 9, 10, 28, 29
experimental data for recovery factor, 69
heat transfer in the free molecule flow, 16
heat transfer in the transonic flow, 47
Nusselt number for transition and sllp flow, 45, 46, 47
recovery factor, 74 (see Recovery factor)
stagnation point of continuum flow, (see Stagnation p01nt)
subsonic drag, (see Drag)
transonic flow, (see Transonic flow)
" uncertainty, (see Uncertainty)
Cylindrical body, 60
accuracy of, 61
at great distance, 8
recovery factor (see Recovery factor)
separation of flow around, 8

Drag coefficients, 21

in gubsonic transition flow, 5, 52
Degree of accuracy for sphere, 63, 77
Density, 11, 12

of low part, 39

in the free molecule regime, 14
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Departure from free molecule and continuum regime, 28, 51
Dependence, on thermal accommodation coefficient, 33

on body shape, 51
Determination of the heat transfer coefficients, 8
Deviation, 31

at the beginning and end, 33, 43

average, 45
Different regime of rarefied gas dynamics, 3
Downstream portion of sphere, 10

Emissivity, 19, 26
Empirical formula, 75
Energy equation, 36, 37
Energy exchange, 51
Energy flux, 13
incident and reflect, 13
‘Exrror, 40 ,
maximum, 39, 40 ' -
Error function, 18
integral of complementary, 18
Error for experimental data in transition and slip flow regime, 44
Equilibrium condition, 76
Equilibrium temperature 21
Experimental results, or data (see Free molecule transition regimes, or
flat plate, cylinder and sphere)

Flat plate, 4, 36, 55
angle of attack, 23, 25
continuum flow regime, 4
critical Reynolds number for, 6
experimental result of, 27
inclined at an angle, 638
laminar flow over, 4,.5, 35, 55
numerical sclution of, 26
Nusselt number of, (see Nusselt number)
turbulent flow over, 5, 6, 58

Fourier heat conduction law, 3

Free molecule flow, 1, 64
definition of, 3
of recovery factor, 67 '

Free molecule regime, (see Introduction)
adiabatic recovery temperature, 23, 26
concave surface, 25
convective heat transfer rate, 19, 23
density (see Density)
experimental results, 27, 28, 29
generalization, 30
hypersonic, 21, 24
Maxwell velocity distribution function, 21
mean overheat (see Overheat)
modified recovery factor (see Recovery factor)
modified Stanton number (see Stanton number)
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Free molecule flow regime (continued)
nonuniform gas, 26
Oppenheim theory (see Oppenheim theory)
- review of theory, 14
stagnation temperature, 24
variocus geometrical shapes, 15, 16
Free stream condition, 37
Friction, 34
internal, 55
skin, 32, 37
Function ratio, 51

Gases, rarefied, 1, 2
rarefied stream, 14

Gas constant, molecule, 12

Gas dynamics, rarefied, 1, 3

General effect of slip flow and temperature jump, 34

General formulation, 32

Generalization, 31

General trend, of uncertainty in rarefied subsonic flow, 51
of recovery factor, 64

Heat conduction term, 36
Heat transfer, 24,34, 36, 38
convective, for large Mach number, 26
in cylindrical body, 6
from sphere, 74
in a laminar flow, 54
by interpolation rule, 52
measurement, 55
to a bedy, 13
Heat transfer coefficient, 2, 3, 4, 5
average, 9
average, for sphere, 40
convective, for transverse cylinder, 28
for separated part, 8
for sphere in subsonic flow, 27
for turbulent flow, 5
in free molecule flow over flat plate, cylinder, sphere, 17, 18
local, 7, 8
over flat plate, 4, 5
Heat transfer mechanism, 3
BHeat transfer rate, convective, 19, 23
Hypersonic, (see Free molecule regime)
in flat plate, 27

Inaccuracy, 40

of interpolation rule, 53
Incident angle, 16
Inertia terms, 36
Initial conditions, 12
Interaction effect, 34
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Interpolation, 1

formula, 43, 51

rule, 1, 27, 42, 44, 49, 51, 53
Introduction, 1

free molecule regime, 11, 67

heat transfer coefficient, 2

recovery factor, 2, 54, 55

transition and slip flow regime, 32, 73
Inviscid layer, 34

Kinetic theory, 31

Kinetic gas, 11

Knudsen number, 1, 3, 13 31, 34, 46, 78, 79
definltlcn, 2
function of, 76, 77

Knudsen's formula, 12

Laminar boundary layers, 8, 10, 59, 60, 63
Laminar flow, 59, 64

over flat plate, 4, 36
Laminar recovery factor, 64
Laminar slip flow, 38
Laplace transformation, 37
Leading edge, 62
Linearized Boltzmann equation (see Boltzmanm)
Local angle of attack, {see Angle of attack)
Local heat transfer. coefflcient (see Heat transfer coeffic1ent)
Local mean free path (see Mean free path)
Location of flow separation, 10
Log-log scale, 43
Loss due to convection heat transfer, 19
Loss of quantitative information, 31
Low density (see Density)

Mach nymber, 15, 23, 31, 33, 39, 45, 48, 63, 68
as a parameter, 31
independence principle, 24
limit of, 33
unity,6l
variation, 61
very large, 24, 38, 71
zero, 33 '
Macroscopic, 31
Maxwell-Boltzmann equation, 32
Maxwell distribution, 26
of velocity function, 21, 32, 64
Makimum error (see Error)
Maximum uncertainty (see Uncertainty)
Mean free path, 2, 12, 32
local, 33
Mean overheat (see Qverheat)
Modified recovery factor (see Recovery factor)
. Modified Stanton number (see Stanton number)
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Molecular, encounters, 32
gas constant, (see Gas constant)
heat capacity, 13
most probable veloeity, 15
weight, 13
Molecule(s), incident, 23
Momentum, - 13
flux, 31
reduction of, 51
Momentum accommodation coeffiéient, 14
for common engineering surfaces, 14
of completely diffused reflection, 14
of concentric cylinder and sphere, 13
of parallel plates, 13
tangential and nermal, 12, 13, 14

Navier-Stokes equation, 3, 35
simplified, 36

Numerical 1integration, 57

Numerical solution, for flat plate, 26

'‘Nusselt number, 9, 17 '
average, for flat plate in free molecule flow, 38
average, for sphere in free molecule flow, 39
average value, for flat plate, 5 (see also Flat plate)
local, 4, 27 ' :
of flat plate in turbulent flow, 5, 6
of cylinder in continuum regime, 6, 7, (see also Cylinder)
versus Reynolds number in subsonic flow, 28

Oppenheim theory, 14, 18, 26, 31, 64
for various geometrical shapes, 16
Stanton number, (see Stanton number)
Overheat, 20
mean, 20

Parallel flow, 60, 69
Parallel plate, 12
Parameter, 34
the value of, 56 '
Perturbation expansion solution, 32
Plate, surface temperature of, 56
Potential flow, 7 ‘
Potential theory, 7
Prandtl number, 4, 5, 6, 11, 35, 37, 56, 57, 58, 60

Radiation, 18, 23, 26

solar, 26
Radiation cecefficient, average overall, 43
Radiation conducticon correction, 44
Radiative, 26
Rarefaction, 2

affect, 34
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Rarefied, 1, 2
gas flow, 48
subsonic flow, 39
Rarefied flow, high speed, 24
Rayleigh problem, 36
Recovery factor, 54, 57, 67, 68, 71
flat plate, 74, 75, 76
for sphere and cylinder, 68
for the particular situation, 58
for the (laminar) supersonic and subsonic, 63
for various cones, 63, 65
in free molecule flow, 66
modified, 23, 24, 68
for aphere, 70, 74
thermal, 66, 67, 71
Recovery ratio, normalized, 72
Recovery temperature, 54, 57, 58, 74
mean, 54
Recovery temperature ratio, in transonic flow for cylinder, 74
Reemission, diffuse, 14
specular, 14
Reference temperature, 59
Reference velocity, 9
Reference length, 9
Reynolds number, 1, 31, 33, 38, 39, 40, 46, 49
critical, 5 6, ll
local, 4, 5, 8, 10

Shock wave, 33, 39
Skin friction, (see Friction)
Slip flow, 1, 3 :
Slip (flow) regime, 31, 32, 34, 51, 52
boundary condition 1in, 35
diatomic in, 34
flat plate in, 35
free stream condition for flat plate in, 36
heat transfer rate of, 35
Maxwell molecules in, 35
monoatomic in, 35 ‘
Stanton number in, 37
supersonic, 40
Speed ratio, 23 '
Sphere, 10, 30, 39, 40 (see also Subsonic, heat transfer coefficxent)
average heat transfer coefficient of 10
average Nusselt number of, 38, 39
modified recovery factor of ll 25
Stagnation condition, 54
Stagnation point, 5
Stanton number, 15;'20, 21, 33, 37
experimental result of, 30
limit of, 33
modified, 19, 24, 25
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Steady, 21 ‘
Stefan-Boltzmann constant, 19, 26
Subsonic 27, 28, 31, 33, 34, 49, 60, 61, 62, 73
continuum regime 53
drag (see Drag)
external, rarefied flow, 1
flow for sphere and cylinder, 32
flow to rarefied air, 42 ,
free molecule flow, 31
Mach number, 40
rarefied flow for sphere, 30
rarefied flow for wire, 29
region, 19, 27 '
transition regime (flow), 43, 51
Supersonic, 27, 28, 39, 61
theoretlcal curve of, 28
Surface temperature, 13, 26

Tangential and normal components of momentum (see Momentum)
Temperature distribution, 48
Temperature field, 56
Temperature jump (condition), 1, 34, 35
boundary condition, 34, 35
effect, 51
Temperature potentlal, 59
Theoretical formulation, for convective heat transfer, 45
Theory, review, 14 :
Oppenheim, (see Oppenheim)
Thermal accommedatlon coefficient, 3, 14, 32
engineering purpose of, l4 :
free of contamination in, 14
Thermal conductivity, 7
Thermal contact, 25
Thirteen momentum equation, 35
Transport, convective and radiative, 26
Transition (flow) regime, 1, 3, 27, 28, 32, 33, 39, 43
characteristic quantity 1n, (see Characteristic)
experiments, 32 .
heat transfer for flat plate, 37, 38
heat transfer in, 34
stagnation point in, 34
subsonic (see Subsonic)
Transition and slip flow regime, 32, 69, 72
Transition experiments, 51
Transonic recovery temperature ratio, 23
Trend of recovery factor, 72
Turbulent boundary layer, 5
Turbulent flow, over flat plate, 5
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Uncertainty, 49 _

: actual for sphere, 44, 45
general trend, 51, 52, 53
for free molecule flow, 69
for transition and slip flow, 70, 77
of recovery factor for flat plate, 60
or recovery factor for cylindrical body, &3
of recovery factor for sphere, 64

Variable properties, 59
of specific heats, 59, 60
of temperature recovery factor for cone, 65
Variation, of accommodation factor, 18
' of coefficients, 56
of Mach number, 61 :
with Mach and Reynolds numbers; 48
Velocity, condition, 35
distribution function, 32
slip, 34
Viscous, effect, 34
layer, 34
l1iquid, 41
term, 36

Wall, 34

Wall temperature, 21
Wedges, 17, 65, 68
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